Quantum-inspired particle swarm optimization algorithm with performance evaluation of fused images

نویسندگان

  • ZHANG LE
  • ZHANG XINMAN
  • XU XUEBIN
  • WANG DONG
  • LIU JIE
  • LIU YANG
چکیده

In order to improve and accelerate the speed of image integration, an optimal and intelligent method for multi-focus image fusion is presented in this paper. Based on particle swarm optimization and quantum theory, quantum particle swarm optimization (QPSO) intelligent search strategy is introduced in salience analysis of a contrast visual masking system, combined with the segmentation technique. The superiority of QPSO is quantum parallelism. It has stronger search ability and quicker convergence speed. When compared with other classical or novel fusion methods, several metrics for image definition are exploited to evaluate the performance of all the adopted methods objectively. Experiments are performed on both artificial multi-focus images and digital camera multi-focus images. The results show that QPSO algorithm is more efficient than non-subsampled contourlet transform, genetic algorithm, binary particle swarm optimization, etc. The simulation results demonstrate that QPSO is a satisfying image fusion method with high accuracy and high speed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Inspired Swarm Optimization for Multi-Level Image Segmentation Using BDSONN Architecture

This chapter is intended to propose a quantum inspired self-supervised image segmentation method by quantum-inspired particle swarm optimization algorithm and quantum-inspired ant colony optimization algorithm, based on optimized MUSIG (OptiMUSIG) activation function with a bidirectional self-organizing neural network architecture to segment multi-level grayscale images. The proposed quantum-in...

متن کامل

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

Diversified Particle Swarm Optimization for Hybrid Flowshop Scheduling

The aim of this paper is to propose a new particle swarm optimization algorithm to solve a hybrid flowshop scheduling with sequence-dependent setup times problem, which is of great importance in the industrial context. This algorithm is called diversified particle swarm optimization algorithm which is a generalization of particle swarm optimization algorithm and inspired by an anarchic society ...

متن کامل

Quantum-Inspired Differential Evolution with Particle Swarm Optimization for Knapsack Problem

This paper presents a new hybrid algorithm called QDEPSO (Quantum inspired Differential Evolution with Particle Swarm Optimization) which combines differential evolution (DE), particle swarm optimization method (PSO) and quantum-inspired evolutionary algorithm (QEA) in order to solve the 0-1 optimization problems. In the initialization phase, the QDEPSO uses the concepts of quantum computing as...

متن کامل

Sobol Mutated Quantum Particle Swarm Optimization

This paper presents a new mutation operator called the Sobol Mutation (SOM) operator for enhancing the performance of Quantum Particle Swarm Optimization (QPSO) algorithm. The SOM operator unlike most of its contemporary mutation operators do not use the random probability distribution for perturbing the swarm population, but uses a quasi random Sobol sequence to find new solution vectors in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014